CompTIA Security+ SY0-601 Course
-
About the course and examAbout the course and certification
-
About the course author
-
Pre-requisites
-
Tools and tips to help you study more efficiently
-
Study techniques that will help you pass
-
What surprised me the most about the exam
-
Domain 1: Threats, Attacks, and VulnerabilitiesAbout threats, attacks, and vulnerabilities
-
1.1: Compare and contrast social engineering techniquesWhat is social engineering?
-
Principles
-
Spam
-
Blocking and Managing Spam
-
Phishing
-
Smishing
-
Vishing
-
Spear Phishing
-
Whaling
-
Impersonation
-
Dumpster diving
-
Shoulder surfing
-
Pharming
-
Tailgating
-
Eliciting information
-
Prepending
-
Identity fraud
-
Invoice scams
-
Credentials harvesting
-
Reconnaissance
-
Hoax
-
Watering hole attack
-
Typo squatting and URL hijacking
-
Influence campaigns
-
Hybrid warfare
-
Practical knowledge check
-
1.2: Analyze potential indicators to determine the type of attackWhat is malware?
-
Malware classification
-
Virus
-
Worms
-
Backdoor
-
Trojans
-
Remote Access Trojan (RAT)
-
Ransomware and Crypto Malware
-
How does ransomware work?
-
Potentially unwanted programs (PUPs)
-
Spyware
-
Adware and Malvertising
-
Keyloggers
-
Fileless malware
-
Logic bombs
-
Rootkit
-
Bots and Botnets
-
Command and control
-
What are password attacks?
-
Plaintext, encrypted, and hashed passwords
-
Brute force
-
Dictionary attacks
-
Spraying attacks
-
Rainbow and hash tables
-
Credential stuffing
-
What are physical attacks?
-
Malicious universal serial bus (USB) cable
-
Malicious flash drive
-
Card cloning
-
Skimming
-
What is adversarial AI and tainted training for ML?
-
Supply-chain attacks
-
Cloud-based vs. on-premises attacks
-
Cryptography concepts
-
Cryptographic attacks
-
Quiz: 1.23 Quizzes
-
1.3: Analyze potential indicators associated with application attacksPrivilege escalation
-
Improper input handling
-
Improper error handling
-
Cross-Site Scripting (XSS)
-
Structured Query Language (SQL) injections
-
Dynamic Link Library (DLL) Injections
-
Lightweight directory access protocol (LDAP) Injections
-
Extensible Markup Language (XML) and XPATH Injections
-
XXE Injections
-
Directory traversal
-
Request forgeries (server-side, client-side, and cross-site)
-
Application Programming Interface (API) attacks
-
Secure Sockets Layer (SSL) stripping
-
Replay attacks (session replays)
-
Pass the hash
-
Race conditions (time of check and time of use)
-
Resource exhaustion
-
Memory leak
-
Pointer/object dereference
-
Integer overflow
-
Buffer overflows
-
Driver manipulation (shimming and refactoring)
-
Quiz 1.32 Quizzes
-
1.4: Analyze potential indicators of network attacksWhat are wireless attacks?
-
Distributed Denial of Service (DDoS)
-
Rogue access point and Evil Twin
-
Bluesnarfing and Bluejacking
-
Disassociation and Jamming
-
Radio Frequency Identifier (RFID) attacks
-
Near Field Communication (NFC)
-
Initialization Vector (IV)
-
Man in the middle (on-path)
-
Man in the browser (on-path browser)
-
What are layer 2 attacks?
-
Address resolution protocol (ARP)
-
Media access control (MAC) flooding
-
MAC cloning
-
What are Domain Name System (DNS) attacks and defenses?
-
Domain hijacking
-
DNS poisoning
-
Universal resource locator (URL) redirection
-
Domain reputation
-
Quiz 1.41 Quiz
-
1.5: Explain threat actors, vectors, and intelligence sourcesWhat are actors and threats?
-
Attributes of actors
-
Vectors
-
Insider threats
-
State actors
-
Hacktivists
-
Script kiddies
-
Hackers (white hat, black hat, gray hat)
-
Criminal syndicates
-
Advanced persistent threats (APTs)
-
Shadow IT
-
Competitors
-
Threat intelligence sources (OSINT and others)
-
Using threat intelligence
-
Research sources
-
Quiz 1.51 Quiz
-
1.6: Security concerns associated with various vulnerabilitiesCloud-based vs. on-premises vulnerabilities
-
Zero-day vulnerabilities
-
Weak configurations
-
Weak encryption, hashing, and digital signatures
-
Third-party risks
-
Improper or weak patch management
-
Legacy platforms
-
Impacts
-
Quiz 1.61 Quiz
-
1.7: Summarizing techniques used in security assessmentsThreat hunting
-
Vulnerability scans
-
Security information and event management (SIEM) and Syslog
-
Security orchestration, automation, and response (SOAR)
-
Quiz 1.71 Quiz
-
1.8: Explaining techniques used in penetration testingImportant pentesting concepts
-
Bug bounties
-
Exercise types (red, blue, white, and purple teams)
-
Passive and active reconnaissance
-
Quiz 1.81 Quiz
-
Domain 2: Architecture and DesignAbout architecture and design
-
2.1: Explaining the importance of security concepts in an enterprise environmentConfiguration management
-
Data sovereignty
-
Data protection
-
Hardware security module (HSM) and Trusted Platform Module (TPM)
-
Geographical considerations
-
Cloud access security broker (CASB)
-
Response and recovery controls
-
Secure Sockets Layer (SSL) and Transport Layer Security (TLS) inspection
-
Hashing
-
API considerations
-
Site resiliency
-
Deception and disruption
-
Quiz 2.11 Quiz
-
2.2: Virtualization and cloud computing conceptsComparing cloud models
-
Cloud service providers
-
Virtualization
-
Containers
-
Microservices and APIs
-
Serverless architecture
-
MSPs and MSSPs
-
On-premises vs. off-premises
-
Edge computing
-
Fog computing
-
Thin client
-
Infrastructure as Code
-
Services integration
-
Resource policies
-
Transit gateway
-
Quiz 2.21 Quiz
-
2.3: Secure application development, deployment, and automation conceptsUnderstanding development environments
-
Automation and scripting
-
Version control
-
Secure coding techniques
-
Open Web Application Security Project (OWASP)
-
Integrity measurement
-
Software diversity
-
Provisioning and deprovisioning
-
Elasticity
-
Scalability
-
Quiz 2.31 Quiz
-
2.4: Authentication and authorization design conceptsImportant authentication and authorization concepts
-
Multifactor authentication (MFA) factors and attributes
-
Quiz: MFA factors and attributes1 Quiz
-
Authentication technologies
-
Biometrics techniques and concepts
-
Authentication, authorization, and accounting (AAA)
-
Cloud vs. on-premises requirements
-
Quiz 2.41 Quiz
-
2.5: Implementing cybersecurity resilienceWhat is redundancy?
-
Disk redundancy (RAID levels)
-
Network redundancy
-
Power redundancy
-
Replication
-
Backup types (full, incremental, differential, and snapshot)
-
Backup types practice scenarios
-
Backup devices and strategies
-
Quiz: Backup types, devices, and strategies1 Quiz
-
Non-persistence
-
Restoration order
-
Diversity
-
Quiz 2.51 Quiz
-
2.6: Security implications of embedded and specialized systemsWhat are embedded systems?
-
System on a Chip (SoC)
-
SCADA and ICS
-
Internet of Things (IoT)
-
Specialized systems
-
VoIP, HVAC, Drones/AVs, MFP, RTOS, Surveillance systems
-
Communication considerations
-
Important constraints
-
2.7: Importance of physical security controlsBollards/barricades, Mantraps, Badges, Alarms, Signage
-
Lighting and fencing
-
Cameras and Closed-circuit television (CCTV)
-
Industrial camouflage
-
Personnel, robots, drones/UAVs
-
Locks
-
Different sensors
-
Fire suppression
-
Protected cable distribution (PCD)
-
Secure areas (air gap, faraday cages, DMZ, etc…)
-
Hot and cold aisles
-
Secure data destruction
-
USB data blocker
-
Quiz 2.71 Quiz
-
2.8: Basics of cryptographyCommon use cases
-
Key length
-
Key stretching
-
Salting, hashing, digital signatures
-
Perfect forward secrecy
-
Elliptic curve cryptography
-
Ephemeral
-
Symmetric vs. asymmetric encryption
-
Key exchange
-
Cipher suites
-
Modes of operation
-
Lightweight cryptography and Homomorphic encryption
-
Steganography
-
Blockchain
-
Quantum and post-quantum
-
Limitations
-
Quizzes 2.82 Quizzes
-
Domain 3: ImplementationAbout implementation
-
3.1: Implement Secure ProtocolsImportant protocols to know and use cases
-
Important email secure protocols
-
IPsec and VPN
-
FTPS, SFTP, SCP
-
DNSSEC
-
SRTP and NTPsec
-
DHCP
-
SNMP and SNMPv3
-
Quiz 3.11 Quiz
-
3.2: Implement host or application security solutionsEndpoint protection
-
Self-encrypting drive (SED), full disk encryption (FDE), and file-level encryption
-
Boot integrity
-
Database and data security
-
Application security
-
Hardening hosts
-
Sandboxing
-
Quiz 3.21 Quiz
-
3.3: Implement secure network designsDNS
-
Load balancing
-
Network segmentation
-
East-West and North-South
-
Jump servers (bastion hosts)
-
Network Address Translation (NAT) Gateway
-
Proxy servers
-
Out-of-band management
-
Quiz 3.3.11 Quiz
-
Virtual Private Networks (VPNs) and IPsec
-
Network Access Control (NAC)
-
Port security
-
Network-based intrusion detection system (NIDS) and network-based intrusion prevention system (NIPS)
-
Firewalls
-
Next-Generation Firewalls
-
Access Control List (ACL) and Security Groups (SGs)
-
Quiz 3.3.21 Quiz
-
Quality of Service (QoS)
-
Implications of IPv6
-
Port scanning and port mirroring
-
File integrity monitors
-
Quiz 3.3.31 Quiz
-
3.4: Install and configure wireless security settingsCryptographic protocols
-
Methods
-
Authentication protocols
-
Installation considerations
-
Quiz 3.41 Quiz
-
3.5: Implement secure mobile solutionsConnection methods and receivers
-
Mobile deployment models
-
Mobile device management (MDM)
-
Mobile devices
-
Enforcement and monitoring
-
Quiz 3.51 Quiz
-
3.6: Apply cybersecurity solutions to the cloudCloud security controls
-
Secure cloud storage
-
Secure cloud networking
-
Secure cloud compute resources
-
Secure cloud solutions
-
Quiz 3.61 Quiz
-
3.7: Implement identity and account management controlsUnderstanding identity
-
Account types to consider
-
Account policies to consider
-
Quiz 3.71 Quiz
-
3.8: Implement authentication and authorization solutionsAuthentication management
-
Authentication protocols and considerations
-
Extensible Authentication Protocol (EAP)
-
RADIUS and TACACS+
-
Kerberos, LDAP, and NTLM
-
Federated Identities
-
Access control schemes
-
Recap notes from this section
-
Quiz 3.81 Quiz
-
3.9: Implement public key infrastructureWhat is public key infrastructure?
-
Types of certificates
-
Certificate formats
-
Important concepts
-
Quiz 3.91 Quiz
-
4.0: Operations and Incident ResponseAbout operations and incident response
-
4.1: Use the appropriate tools to assess organizational securityNetwork reconnaissance and discovery part 1
-
Network reconnaissance and discovery part 2
-
File manipulation
-
Shell and script environments
-
Packet capture and replay
-
Forensics tools
-
Exploitation frameworks
-
Password crackers
-
Data sanitization
-
Quiz 4.11 Quiz
-
4.2: Policies, processes, and procedures for incident responseIncident response plans
-
Incident response process
-
Important exercises
-
Important attack frameworks
-
BCP, COOP, and DRP
-
Incident response team and stakeholder management
-
Retention policies
-
Quiz 4.21 Quiz
-
4.3: Using appropriate data sources to support investigations after an incidentVulnerability scan outputs
-
SIEM dashboards
-
Log files
-
Syslog, rsyslog, syslog-ng
-
Journald and journalctl
-
NXLog
-
Bandwidth and network monitors
-
Important and useful metadata
-
Quiz 4.31 Quiz
-
4.4: Applying mitigation techniques or controls to secure environments during an incidentReconfiguring endpoint security solutions
-
Configuration changes
-
Isolation, containment, and segmentation
-
Secure Orchestration, Automation, and Response (SOAR)
-
Quiz 4.41 Quiz
-
4.5: Key aspects of digital forensicsDocumentation and evidence
-
E-discovery, data recovery, and non-repudiation
-
Integrity and preservation of information
-
Acquisition
-
On-premises vs. cloud
-
Strategic intelligence and counterintelligence
-
Quiz 4.51 Quiz
-
Domain 5: Governance, Risk, and ComplianceAbout governance, risk and compliance
-
5.1: Compare and contrast various types of controlsCategories
-
Control types
-
Quiz 5.11 Quiz
-
5.2: Applicable regulations, standards, or frameworks that impact organizational security postureRegulations, standards, and legislation
-
Key frameworks to know about
-
Benchmarks and secure configuration guides
-
Quiz 5.21 Quiz
-
5.3: Importance of policies to organizational securityPersonnel
-
User training
-
Third-party risk management
-
Data
-
Credential policies
-
Organizational policies
-
Quiz 5.31 Quiz
-
5.4 Risk management processes and conceptsTypes of risks
-
Risk management strategies
-
Risk analysis
-
Disasters
-
Business impact analysis
-
Quiz 5.41 Quiz
-
5.5: Privacy and sensitive data concepts in relation to securityOrganizational consequences of privacy breaches
-
Notifications of breaches
-
Data types
-
Privacy enhancing technologies
-
Roles and responsibilities
-
Quiz 5.51 Quiz
-
Course Recap and Next StepsLooking for the practice exams?
-
Receiving your Certificate of Completion
Once one of your devices is infected, it can be turned into a bot. A bot will perform tasks under the control of another program, usually without the need for any human interaction. This is why they can oftentimes be referred to as zombies…and in fact, this is a great way to visualize the threat.

If you have an individual or a criminal organization that has infected millions of devices over the past few years, including computers, mobile phones, and IoT devices, and has turned all of those devices into bots, they now have what’s called a botnet (short for bot network).

They can then send commands to bots in their botnet to perform malicious tasks, including:
- Spread misinformation across social media or ecommerce platforms by creating a mass amount of accounts that they control
- Attack legitimate web services with an overwhelming amount of traffic
- Attack networks
Why do criminals create botnets?
Spreading misinformation and fake reviews
Botnets can be extremely lucrative and surprisingly not that difficult to find. For example, if your competitor wanted to promote their product, but yours had better reviews, they could hire criminal organizations with botnets to create a large number of accounts and leave overwhelmingly positive reviews, which would then trick the e-commerce platform’s algorithm into pushing their product over yours.

Distributed Denial of Service Attacks
Or, if your competitor knew that you were going to launch a very important sale at a specific date and time, they could hire criminals with botnets to attack your website right as the product launch is about to happen, rendering your website completely unusable to legitimate customers trying to purchase your product. If the attack were to be successful, your website could potentially remain offline for hours on end, resulting in frustrated customers that change their mind and never purchase your product.

Botnets can also be used for other purposes, such as to relay spam, distribute computing tasks, mine cryptocurrency, or proxy network traffic.
Relay spam
Botnets can be an effective way to deliver spam, such as email spam. As we’ve talked about, email, in broad terms, is not very secure. Anyone can pretend to be sending email on your behalf. Knowing this, spammers can use their botnets by:
- Contacting their botnet, preparing them to send spam
- Using bot devices as email servers
- Sending recipients spam email
Now multiply by the number of recipients that the spammer is trying to reach, and the number of devices they have in their botnet.

Distribute computing tasks
Because devices in a botnet are completely separate devices, the botnet operator can have them work either independently or together, in order to run computing tasks that could otherwise take a very long time to compute on one single device. This could be machine learning operations, for example, which could cost a significant amount of money if you were to run it at a similar scale in a cloud provider.

Instead, you’re able to use other people’s devices for free to run the same kinds of workloads.
Mine cryptocurrency
Along similar lines, many botnet operators have started using their bots to mine cryptocurrency on their behalf.
Again, mining has become more and more expensive: you need a lot of powerful hardware to mine any significant amount, which also requires higher electricity usage.

Instead, you can mine from other people’s devices for no cost at all.
Proxy network traffic
One last example of when botnets can be useful is to proxy network traffic.
Proxying traffic can be used to anonymize your actions. While there are many legitimate and practical use cases for doing this, it can also be a tool that criminals use to perform illegal actions.

For example, they may try to attack web resources without proper permission. They may try to access bank accounts of compromised users, and so on.
Every action you take on the web leaves a footprint. If you perform illegal actions and you don’t take the necessary steps to mask your footprint, it makes it quite easy for the authorities to find you.
Instead, if you have access to a botnet, you could relay your actions through those devices instead, which would make it look like those actions were being taken by someone else, potentially on a completely different continent then where you live.
The more bots you can relay the traffic through, the harder it can be to trace back the original requests.
Conclusion for Bots and Botnets
While the list of uses for botnets could go on, these are some examples of why cybercriminals may want to create bots and build bot networks. In the next lesson, we’ll discuss how they use something called Command and Control servers in order to create and control their botnets.

Responses